Version 26. October 2009, unpublished documentéybéper

A vector-based algorithm to detect core, edge, pdiand
corridor areas and comparison with its raster-based
complement

Stefan Steinigef*

2 Department of Geomatics Engineering, UniversitZafgary, 2500 University Drive N.W.,
Calgary, Alberta, Canada T2N 1N4

*Corresponding authossteinig@ucalgary.ca

Abstract Over the past years geographic vector datasets dinscribe aspects such as
landcover and landuse are increasingly availabéetduhe emergence of new image analysis
segmentation technologies and advances in thezdigan of traditional analogue maps from
the topographic, vegetation, soil and geologicahiaes. With an increase in the availability
and use of vector data, it is necessary to (i) naaiadysis algorithms available for both vector
and raster data, as data conversion can producanteavartefacts, and (ii) to be aware of the
effects of the data representation - i.e., vectaraster — on statistical and analytical results.
We have implemented algorithms that detect pattesunsh as core, edge, patch, and corridors
based on vector overlay and buffer operations. éa igenerated the same classes for the
same dataset, using the existing software GUIDO®jclw employs a raster-based
morphologic analysis approach. The generated aneh perimeter statistics as well as
classified regions show differences that are caumea different data representation, e.qg.
spatial precision, and that are caused by modetliegclasses non-exclusive and mutually
exclusive.
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1 Introduction

Pattern analysis in landscape ecology and the agtjgn of landscape metrics have focused
primarily on raster data types. Though, more rdgenector datasets that describe landuse
and landcover are increasingly available due toethergence of new earth observation and
data processing technologies, such as GEOgraphectBased Image Analysis (GEOBIA,
see Blaschke et al., 2008), and advances in digiti®pographic, vegetation, geologic and
soil map inventories (Rossiter 2004). Key advargagfesuch vector representations include,
(i) multiple (and seamless) zoom capability, (iipma ‘natural’ looking ‘curved’ features that
closely resemble those drawn by an experiencedoghtdrpreter/analyst, and (iii) inherent
topological attributes (i.e., area, perimeter, hbmurs, etc) associated to each polygon or
image-object (Castilla and Hay, 2008) that canlgdm queried and modelled (in a GIS).
Therefore, it seems plausible that many forms ofaggc analysis, especially those that relate
ecological processes to landscape features, caefibémm using these newly available
vector datasets. However, this requires (i) devefppubiquitous and easily accessible
algorithms for landscape analysis that can be egpt vector data (if data conversion is to be
avoided — see below), and (ii) being aware of piaedifferences in feature statistics derived
from raster and vector datasets. It is importanidte that these difference may be caused by
the data representation itself (i.e., from theistiaal generalisation effects when gridding
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data), as well as from different sets of parametard parameter options (e.g., cell-size-
constrained vs. user-defined spatial buffers) tiesult from the different implementation
approaches.

With respect to developing vector-based approadhessimplest approach is to convert
existing raster data to vector data, as done byt ¥o@l. (2007a) for Corinne Land Cover
2000 data. However, this poses challenges in sefpdhe appropriate rasterisation
parameters, including the important decision reiggrthe size of the (output) raster cell (van
der Knaap, 1992; Stoms, 1992; Bettinger et al.,61@3ngalton, 1997; Wade et al., 2003).
For example, Congalton (1997) analysed how the -agld size affects (i) feature
representation (i.e., whether the feature is corthin the raster dataset or not), (ii) positional
accuracy (does the feature becomes displaced dyredtposition?), and (iii) the derived area
and perimeter statistics (e.g. area in his experismehanges from 80.4% to 104.6%). Another
conversion problem reported by Bettinger et al.9@)9and Congalton (1997) is, that for
certain (large) cell sizes, patch areas formernprasented by only one polygon are split into
several parts. Thus, not only does metric inforaratichange, but also topological
information, i.e., the spatial relationships amgadches, is altered.

The primary goal of this research is to develop i@mbrt on a vector-based algorithm that
extracts the same landscape pattern classesp@teh, core, edge and corridors etc.) as the
raster-based algorithm of Vogt et al. (2007b). lgeshis will provide users with a means to
avoid the (above) problems resulting from vectoraster conversions. Our second objective
is to compare both raster and vector implementatioith respect to parameter settings and
their generated results. Before discussing thefferelnces we will first (i) describe the
classes of patterns that these algorithms shouldbbe to extract, (ii) outline the approach
used in our vector-based algorithm, (iii) descioloe evaluation method, (iv) apply it to a test
data set, and (v) illustrate and quantify our dfecsgion results.

2 Methods
2.1 Types of Detectable Pattern Classes

Voigt et al. (2007b) identify four types of forepattern classes useful for landscape
analysis: (1)core forest area, (2) forest patches - also calleddlets, (3) forest edge, and (4)
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Fig. 1 Two examples of the same scene illustrating difiedetectable forest pattern classes.
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perforated forest (i.e., inner forest edges; see below and Fig.A¥).this classification is
intended to be applied to binary forest maps, odditianal class (5)non-forest (i.e.
background)s also introduced. Due to their binary natureséhelasses are intended to be
mutually exclusive. ‘Mutually exclusive’ means hehat a location in space can be assigned
only to one single class and not to several, asiplesfor instance with fuzzy classification
methods (see Burrough and McDonnell, 1998). In eors@ paper that focuses on the
detection of ecological corridors, Vogt et al. (Z&Drefine theiedge andperforation classes
by also definingcorridors, shortcuts, and different types diranches — each of which are also
mutually exclusive. Finally, in a third (Vogt et.,aR009) and fourth paper Soille and Vogt
(2009) rename several of their initial classes Iteguin the following classes: (Igore, (2)
loop, (3) perforation, (4) idet (i.e., patch), (5) bridge (i.e., corridor, shortcut), (6) edge, and
(7) branch, plus onenon-forest/no-class.

The renaming and use of these different classesvaral articles is somewhat confusing,
though it makes sense with respect to the diffeagmiication areas presented, i.e., animal
movement pattern analysis vs. forest pattern dleason vs. electrical circuit analysis. For
simplicity, we have concentrated on the set ofsgagrovided in the earlier publications by
Vogt et al. (2007a, b). In our system, a first lecape analysis algorithm should extract the
following base classes:

(1) core — forest patches with a dimension larger thanrgaitetransition zone (i.e.,
edge); often seen as disturbance free zones ingical analysis;

(i) edge (inner and outer) — transitional buffer zones lestw forest core and non-
forest, i.e., zones that are affected by disturbanc

(i)  patch (islets) — forest areas that are smaller thanddfened transition zones, i.e.,
zones that are under the influence of disturbance;

(iv)  perforation — transition zones between forest core and nogstovhere the non-
forest core is smaller than the transition zong.(ea smaller forest clearing).

In our implementation, these classes are not niyteaktlusive. That is, a forest portion
may be classified as edge but also as perforafibis is an important difference to the
existing raster-based implementation and it (i)bdesmthe user to perform a computer-based
as well as a visual analysis of zones where cla®gadap, and (ii) does not impose a ranking
among the pattern classes. Based on the previeusigcted edges and perforations a second
landscape analysis algorithm extracts the follovadditional classes:

v) branches of edges — which are parts of outer edges existing duettong edge
convolutions;

(vi)  corridors— which are edge parts that connect two core areas

(vii)  shortcuts — which are perforation parts between two forésarings (i.e., non-forest
patches) that are close to each other.

In our implementation these three classes are mbtiatly exclusive with each other or
with the previous set (i-iv) for the same reasongi@en above. Instead, they simply refine
the type of edge and perforation zones (Fig. 1). &anore detailed description of these
classes we refer the reader to the original putitica by Vogt et al. (2007a; b) and to Soille
and Vogt (2009), the latter explaining the derizatin an algebraic set notation.

2.2 A Vector-based Algorithm to I ndentify Landscape Patterns

The original implementation by Vogt et al. (2007%b) detect specific landscape patterns
processes raster data only. It uses raster-bastebmatical morphology operations, such as
erosion (shrinking), dilation (growing) and skeletgnedial axis) operations (see Soille and
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Vogt, 2009). Such erosion and dilation operationsobjects are obtained by creating the
Minkowski sum and Minkowski subtraction, respediyyef a source object and a translated
operator object. These morphologic operations aatnomly be applied to (binary) raster
images but also to vector data (see Damen et@8)2 While the operator object can have
any arbitrary shape, the operator used in imagefr@socessing is most often a square (due
to the grid cell matrix structure), and in vectqeaations a discretised (thus, approximated)
disc. GIS vector buffer operations (i.e., inwardd asutward buffering), are a vector-data
realisation of erosion and dilation with a disc{sb@ operator. Therefore, we use GIS buffer
operations to detect the classage, patch, edge and perforation. Such buffer functions
require only one input parameter — the buffer sizmeters. To identifyoranches, corridors
and shortcuts, we use vector overlay operations; in particuthe intersection operation
applied to polygons (see Burrough and McDonnelQ8 9Aquino and Davis, 2003). The
polygon intersection is a parameter free procegsinag only the provision of the polygons
that overlap to calculate the intersection areas.

As noted in the introduction, vector algorithmslwied to be both ubiquitous, and easy to
use if they are to compete with existing rasterlssodo facilitate these conditions, the
implementation of our two vector-based pattern sifestion algorithms is realised as an
extension for the free and open source GIS OpenJ(DflenJUMP Development Core Team
2008; see also Steiniger and Hay, 2009, on freeoped source software). As our algorithm
is freely accessible, implementation details carob&ined from the source code, which is
available from: http://geo.uzh.ch/~sstein (Steinig@08). A free-of-cost software, GUIDOS
1.2, implements the raster-based classificatioardtgn by Soille and Vogt (2009). However,
image size restrictions apply (1024 x 1024 pixeld)en GUIDOS is used free-of-cost
(GUIDOS Online 2008).

2.3 Data

To test our implementation and to compare resuitls the raster-based approach by Soille
and Vogt (2009) we extracted all forest polygomsrirthe landcover dataset of the Swisstopo
VECTOR25 product. VECTORZ25 is the vectorised vearsad the official Swiss topographic
map with scale 1:25,000. The test area has a §izelt&m by 8.5 km with a forest coverage
of 36.9 percent. To be able to use the raster-bapptbach in GUIDOS we converted the
forest polygons into a binary raster using the otyto Raster Tool in ESRI's ArcGIS 9.2.
The rasterisation settings are as follows: (a) sele - 10m, (b) cell assignment type:
maximum area, (c) priority field: none. The celtesiof 10m has been chosen in such a way,
that (i) it is small compared to the dimensionshaf edge, which was set to 50m (see section
2.5), and (ii) that a sufficiently large area coblel processed given the image size restriction
of GUIDOS.

2.4 Comparison Approach

To compare the results of applying both vector @stier-based approaches, we followed two
strategies. First we qualitatively compared outpyt visual inspection. Secondly, we
quantitatively compared by calculating simple astistics for the extracted classes. To be
able to compare both result datasets, several tatknss needed to be applied. First we
needed to aggregate classes in both datasets,skeeGuIDOS version 1.2 extracts not the
shortcut class reported in earlier papers (i.e., Vogt gt28l07a,b), but the pattern claskasp
and bridge reported in Soille and Vogt (2009). Thus, for thector-based result we
aggregated the clashortcut into the classcorridor, and for the raster-based dataset we
aggregated the classbk®p andbridge into a new clasgorridor. Secondly, we needed to
make the vector-based classification mutually extgki by subtracting the refinement classes
(branch and corridor) from perforation and edge. This subtraction rssuh mutually
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Fig. 2 Vector-to-raster conversion effects on area amihrer statistics for 10m by 10m raster cell size.

exclusive classeadge andperforation. Finally, we transformed the raster-based resuit &
vector dataset to be able to calculate ahea statistics. Because the calculation of statistics
based on vector data was (i) considered less bidsedo vector to raster transformations
than a calculation based on raster, and (ii) waseed&o achieve with the given tools. The
raster to vector conversion was done in ArcGIS @aster to Polygon tool — without
simplification option). Data cleaning after the wersion, to obtain a topological correct
dataset, and statistics calculation were done v@ipenJUMP GIS and OpenOffice,
respectively.

3 Experiment and Results

Input data have been a vector dataset that codtainky forest polygons and its rasterised
(10nt cells) version, i.e., a binary raster with celepitting forest and non-forest areas. To
asses the conversion effects we calculated forest @and forest perimeter for both datasets
(Fig. 2). The binary raster data have been usemh@ad for the raster-based classification
performed with GUIDOS 1.2. For the parameter S,cwidefines the size of the transition
zone between forest core and non-forest in pixedschose a value of 5 (pixels), resulting in
an Effective Edge width (EE) of 50m. We also deditleat the morphologic operations use

Raster-based Classification Vector-based Classification

Branch Edge

Fig. 3 Spatial differences between algorithm implemeateti The raster-based result has been calculatad wi
GUIDOS 1.2. The marker L denotes areas that assifiled as Loop in GUIDOS. These loops are aggeebat
with the clas®Bridge into a new clas€orridor to enable a comparison. D1 to D3 mark differerttissussed in
the text.
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Fig. 4 Different area statistics for the extracted clasdiote 1: The difference values given in % useatiea
value derived from the raster-based approach a¥% 16ference (i.e. 163.2 ha for the class corriddote 2:
The area sum for vectors is larger than the reteresince the classperforation andedge, and the refinement
classes are not mutually exclusive in our classiib.

the 8-direction model instead of a 4-direction mamethe grid (see Soille and Vogt, 2009).
Hence, buffer operations on the raster will betessemble buffer operations performed on
vector geometries and results of topologic (i.ewoek) analysis operations on the raster
better resemble reality. But see our discussiompuat parameters below.

We then classified the vector dataset with our arebbased approach. To obtain the same
Effective Edge width (EE), thus making the classifion results comparable, we set the
(inward) buffer size to 50m. Fig. 3 illustratesexton of the resulting datasets for the raster
and the vector approach — after (i) raster-to-vectmversion of the raster results, (ii) data
cleaning, and (iii) class aggregation was performigee labels D1-D3 mark areas in which
differences are apparent. D1 marks an area in wiiehvector-based approach indentifies
core area, and subsequently also classifies thewswing area as edge, whereas the raster-
based algorithm doesn't identify a core area. Tlheker D2 highlights an area where the size
of indentified corridors differ. Finally, D3 shoves area that has been classified in the raster-
based approach as edge area, whereas the vectordggzroach identifies the same area as
perforation.

The quantitative differences in terms of (i) abselarea (ha) per class, and (ii) relative
area fraction (%) for each class have been cabuliffatr the full test datasets and are given in
Fig 4. Most interesting in these statistics is ttte differences in absolut@ea between
raster- and vector-based approaches are largerSthaercent for the classesrridor and
perforation. Subsequently the contribution to the total atkagram in Fig. 4) changes for the
class corridor from 7.0% (raster) to 2.8% (vectamyl for the class perforation from 2.7%
(raster) to 4.2% (vector).

4 Discussion — Raster vs. Vector Approach

There are several differences between the rastevactor-based approaches: We begin by
analysing the differences related to data and peteminput, followed by the differences in
results. We then list possible advantages and d#sadges of a vector-based approach.



4.1 Algorithm I nput

Both approaches have one primal parameter thated to define the effective edge width
(EE). In the vector-based approach EE correspoingglysto the buffer width. In the raster-
based approach EE is the result of two parameRrshe raster cell size, anf a size
parameter that defines by how many neighbour pigéition and erosion operations are
performed. Hence, using the raster-based algorigguires first to decide what cell size P
should be used. This is a critical component, sihegved class statistics (e.g., total area)
change for different P as shown by Ostapowicz .e(24l08) and Garcia-Gigorro and Saura
(2005).

A second parameter in the raster-based approadilesn® choose if a 4-direction or 8-
direction model should be used on the grid. Diifiees should appear between results since
the use of eight cell directions allows for thenfiamg of objects (a single pixel thick) that are
not directly adjacent (e.g., connect object callsliagonal directions). In contrast, a vector-
based data representation doesn’t require defigsngeighbourhood-direction model to
conduct topologic analysis. However, we note thegt buffer model is also based on a
discretisation of space — for instance by represgra circle segment of 90 degrees via eight
small straight line segments.

4.2 VVector-to-raster Conversion

For our experiment it was important to analyse réaastatistics change between both
representations as we use the total area as reéefen an analysis of single class area
contributions. As can be seen in Fig. 2 the diffieeein area statistics for the raster and vector
representation are comparably small to the totaledt) area (0.6ha). However, the values
obtained for the (forest) perimeter differ by 23#significant amount. Therefore, if perimeter

statistics are to be derived for/from the clasatiten, then the values for vector and raster
results can not be compared (in our case). Howev&gmparison may be possible if the

perimeter of one class is compared with the togainpeter for all classes, i.e., if perimeter

ratios are used.

4.3 Differencein Resulting Classifications

Our analysis of the output in conjunction with dygplied classification model revealed three
causes for different results. The first cause & ttetected classes are modellednatially
exclusive in the raster-based approach, whereas the classemodelled as non-mutually
exclusive in the vector-based approach. Fig. 5 shimw the vector-based approach which
classes can overlap with each other. The effectsi®imodel difference can be seen in Fig. 3
(label D3) and in the derived area statistics (Big- in particular for perforation zones that
are reclassified to edge zones. From our persggatie question why the classes should be
treated as mutual exclusive. On the one hand irdbom will be lost i.e., two or more
possible class states become one. On the other, haddss priority ranking that leads to
mutual exclusiveness should be done by the expattapplies the classification algorithm
and not by the algorithm designer - unless thestlaation algorithm is designed for a
particular application. However, we are aware tiatually exclusive classes simplify the
calculation of comparable area class statisticshieraster approach.

The second cause of differences is that the (dpatiecision model applied in the vector-
based approach is higher than the precision thatbearetained from a grid cell based
approach. The effects are apparent in the mapgoBKLabels D1 and D2) and in the large
differences for the calculated total area of thesslcorridor (Fig. 4). Since the classes core,
patch, and perforation depend on passing (or negipg) an area threshold, a lower precision
may lead to a different classification. For ins&@na forest patch in a vector dataset may no
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longer be a patch, but instead, classified as amga with a surrounding edge zone in a raster
approach, because the patch area grew in the “eectaster conversion. Similarly a
perforation zone in the vector-based approach eadldssified as edge zone, since the area
size of the hole in the polygon (e.g., a forestiey) changed during the vector-to-raster
conversion and in the raster model, exceeds theatkfsize threshold. For a further
discussion of effects that occur for vector-to-eastonversion we refer to Congalton (1997)
and Lechner et al. (2009), whom extensively analghanges in detection, area, and
positional accuracy when vector-to-raster conveseare performed.

Finally a third cause for differences in visual eprance and in the statistics is that the
raster-based approach seems to perform a geonetpansion of classified areas, in
particular of detected corridor areas. For exampédel D2 in Fig. 3 marks such an area,
which in the raster result, shows that the corthefcorridor zone has been expanded by two
additional corridor zones on both sides. Such & zension will certainly result in different
area statistics for the corridor class. We redadk thecorridor class in the raster result is
actually an aggregation of the claskmyp andbridge.

4.5 Possible Advantages of the Vector-Approach

To allow users of the pattern classification toas informed decision on what
implementation to use, it is useful to highlightvadtages and disadvantages of the vector-
based approach over the existing raster metholgleneral we would recommend using a
vector-based approach if the original input dagactor data and the raster-based approach
if the original input data are already in rastemniat. Data conversion should be avoided, and
in particular, conversions from vector-to-rasterniat, since feature existence, positional
accuracy, area and perimeter statistics, and tgmol@lations may be adversely affected
(Congalton, 1997; Bettinger et al., 1996; Lechnieal e 2009).

= A particular advantage that we see for our vectmed implementation is that the
Effective Edge width (EE) is determined by only queameter, the buffer size, and not
two parameters as in the raster approach (i.a@erresll sizeP and size paramet&§. This
allows a better separation and analyse of the tsffec spatial data representation (i.e.,
map scale) and buffer size (observation scalehotigh not yet implemented, the vector
model will also provide selection of different siparameters to identify patches and to
delineate edges and perforation zones. Laboriots jpi@paration for the raster-based
approach to obtain the necessary input raster toam@ size is not necessary in the vector
approach, since the creation of a binary inputisydo achieve using standard data query
functionality. The vector approach also offers thessibility to extend the current
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implementation, so that several landcover classesbe processed at the same time.
Hence, input data do not need to be binary.

The vector approach doesn’'t have apparent contstrawhen topologic relations are

analysed, whereas the raster-based approach neeagigetate on a 4-direction or 8-

direction model. As a result, the precision of adtons is higher for the vector-based
approach.

Our implementation doesn’t apply a mutually exalasclass model. This may be of

advantage for a detailed visual analysis of thaltesnd it allows the user to apply their

own priority ranking on the classes. For instanemall zones that are classified as
corridors may still be surrounded by an edge ofopation area of sufficient size. Hence,

these areas may not be regarded as corridors antdecaither deleted or reclassified to
edge or perforation zone.

4.6 Possible Disadvantages of the Vector-Approach

We also identified several issues that may be densd as disadvantages of the vector-based
classification:

The first issue is processing speed. Vector opmratican be very costly due to the
accuracy model employed in the calculations, wieraater operations that operate on
cell arrays can be very fast.

A second shortcoming is that our algorithm is nait) able to identify certain types of
refined classes, such as branches of corridorsbeamithes of shortcuts (see Vogt et al.
2007a). To detect those classes would requirentipéementation of more advanced and
expensive processing techniques that allow, faamse, skeleton extraction (Haunert and
Sester, 2008) and graph analysis (Urban and K&@]).

A third issue is the change of area and perimedtdisics by edge effects. This will for
instance occur if certain areas are selected, usisglecting rectangle and applying a
clipping function on it, and the polygons that arethe border of this area of interest are
split. If the classification is applied, then thdes of polygons that have been clipped will
be classified as edge instead of core area. Tadawis situation only the full (forest)
polygons should be selected and processed, iassifted, and afterwards the area of
interest should be generated using a clipping fanand the statistics generated.

A fourth issue may be the generation of sliver gohs (i.e., little patches, often of
elongated shape) due to the high accuracy of vegmbbygon intersection operations
(Burrough and McDonnell, 1998). This will be anussf in a later step the classes are
made mutually exclusive to generate statisticske.iat al. (2009) analysed the influence
of sliver polygons that are generated in landsad@enge analysis and showed that such
sliver polygons can have high impact on generataddécape) metrics. That is, an
elimination of the sliver polygons could be appliédt the statistical effects need to be
considered for each situation to determine if slieimination falsifies or corrects
statistics.

The last issue is that we do not recommend to coenfuector) datasets that represent
different map scales, for instance forest areavddrirom a 1:25,000 map and forest areas
from a 1:50,000 map. This is in accordance withaPsivicz et al. (2008) and Garcia-
Gigorro and Saura (2005), whom recommend not topemenresults of landscape metrics
generated for data with different pixel size (saeameteP above). Experiments that we
have carried out (and will be reported elsewheh®wsthat even simple area statistics,
such as those in Fig. 4, can be very different @salt of cartographic map generalisation
operations that simplify the spatial representatiblandcover classes (Steiniger 2007).



5 Conclusions

In this article we presented vector-based algomsthimat allow the user to extract patch, core,
edge, perforation, corridor, branch and shortcaesdn (binary) landcover data for landscape
analysis purposes. These classes are similar tocldsses extracted by a raster-based
approach of Soille and Voigt (2009) that employstea morphologic operations. Since our
approach operates on vector data the user doesgrdtto convert their data into raster data,
thus, avoiding effects that can occur in rastevaotor conversion as discussed by Congalton
(1997) and others.

In our comparison of the approaches and the gesterasults for one test dataset in raster
and vector representation we identified at least imvportant differences. The raster-based
approach uses a model of mutually exclusive clasgesreas the vector-based approach does
not. The vector-based approach generates resuligloér precision, since the raster-based
approach operates on a simplified spatial model, a grid. It is important to know these
differences to explain variations in spatially esgplresults and in generated statistics. We
have also listed advantages and disadvantages eofvéhtor-based algorithm so that a
potential user can make an informed choice betveeh implementations with respect to
their needs and constraints.

A specific advantage from our perspective is that\tector-based approach has only one
parameter that needs to be set by a user; thiidimension of the transition zone between
core area and non-core areas (i.e., the buffe).slzee user does not need to consider the
effects of choosing a pixel size (i.e., spatialoheson) as is required for the raster-based
approach. Using only one parameter should alloweasier analysis of scale effects on
landscape pattern classification.

Similar to Lausch and Herzog (2002), Wade et @08, and Bettinger et al. (1996) we
noted differences in calculated statistics (arec perimeter), that have been generated for
raster and for vector models of the same study Sitbsequently, if area and perimeter values
are used in an absolute fashion to derive othetslzape metrics (e.g. the area variable is a
direct component of the shape index formula), aotdim a relative fashion (i.e. by forming
ratios), then the values and statistics of suchriosewvill be affected as well by differences in
data representation. Unfortunately we are not &blell which metrics (the raster-based or
the vector-based) are correct since every reprasentis a simplified model of reality and
sometimes a more simplified version can be closeground truth than a model with
supposedly less simplification. However, in thectetwe have pointed out strengths and
weakness of both approaches. Thus, a user shoaldl&¢o account for possible uncertainties
in a qualitative evaluation of the classificati@sults - or should even be able to estimate the
magnitude of the uncertainties.
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