
 1

To be submitted to XXX, Version 19. August 2010 

 

OpenJUMP HoRAE – A free GIS and toolbox for home 
range analysis 

Stefan Steiniger*†§ and Andrew J. S. Hunter§ 

† Department of Geography, University of Calgary, 2500 University Drive N.W., Calgary, 
Alberta, Canada T2N 1N4 

† Department of Geomatics Engineering, University of Calgary, 2500 University Drive N.W., 
Calgary, Alberta, Canada T2N 1N4 

 
*Corresponding author. Email: ssteinig@ucalgary.ca 

Abstract  Over the past twenty years a set of methods for home-range estimation and analysis 
of animal observation data have been developed. Whereas comparisons among the estimation 
methods and different estimation software are available, only the adahabitat analysis toolbox 
for R is under a free and open source software license and includes established and new home 
range estimation approaches, such as Kernel Density Estimation, Brownian Bridges and Local 
Convex Hulls. However, R and adehabitat are rather catering the needs of the scientific user 
and not the wildlife manager with respect to its general look & feel, and further, provide only 
a limited set of functions for the analysis of home ranges with environmental geodata, e.g. 
land-cover and elevation data. This article presents a free and open-source home range 
analysis toolbox that (i) focuses on the evaluation of GPS collar data, (ii) aims to be fairly 
straight forward to use by the wildlife manager, and (iii) integrates with a desktop GIS to 
allow data analysis beyond the creation of home ranges. Since the developed software is 
distributed under a free and open source license also research can benefit since implemented 
algorithms can be directly tested and improved. 
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Introduction  

The determination of home ranges of animals, that is, the estimation of the geographical area 
that an animal utilizes in its normal activities of food gathering, mating, and caring for young 
(Burt 1934), is of importance for wildlife research but also from a wildlife management 
perspective. Whereas biologists may be interested in the analysis of the home range to 
evaluate behavioural aspects of an animal, wildlife managers may use information on home 
ranges to outline areas of protection. For instance, the analysis of home ranges of individual 
grizzly bears can help to establish measures of conservation for the threatened grizzly bear 
population in Alberta, Canada (Stenhouse and Munro 2000, Calgary Herald 2010). 

Animal home ranges are usually derived based on observation data stemming from VHF 
telemetry, sightings, or GPS collars. With the help of mathematical models and/or statistical 
estimation methods such point-based data can then be transformed into (probabilistic) 
utilization density surfaces or ‘simple’ polygonal shapes that delineate geographically the 
home range. Several such estimation methods have been developed in the past decades 
ranging from geometric estimators, such as the minimum convex polygon technique 
(Burgman and Fox 2003), to more complex statistical methods, such as Kernel Density 
Estimation (Worton 1989, Powell 2000) and Brownian Bridges (Horne et al. 2007). These 
estimation methods have been implemented in different software packages, making them 
accessible not only to the researcher but also to the wildlife manager. For reviews on 
estimation methods we refer to Powell 2000, Kie et al. 2010 and Laver and Kelly (2008). The 
latter authors analyzed as well what software packages have been used in scientific articles, 
which have been published between the years 2004 and 2006. 

Comparisons of home range estimation results have not only been undertaken with respect 
to the different estimation methods (c.f. Seaman and Powell 1996, Horne and Garton 2006, 
Huck et al. 2008, Downs and Horner 2008), but also with respect to differences – for the same 
estimation method – that emerge due to different implementations in software. Lawson and 
Rodgers (1997) as well as Mitchell (2006) note differences of the resulting home ranges, with 
respect to size and shape, among the software programs. In both articles it is also concluded 
that there is need for a comprehensive analysis program that (i) handles all phases of animal 
location data analysis (Lawson and Rodgers 1997), and (Mitchell 2006): (ii) integrates with a 
GIS, (iii) outputs utilization distributions as well as probability contours, (iv) produces results 
consistent with other software, and (v) provides a variety of automated methods for parameter 
estimation (e.g., for the kernel density approach). Mitchell (2006) further notes that certain 
programs are not very user friendly from today’s perspective. We like to add as a further 
criterion that the software should also provide newer estimation methods that have been 
recently developed, e.g. Brownian Bridges and Local Convex Hulls (Getz and Wilmers 2004), 
especially if such methods utilize the additional information that comes with GPS collar data. 
Having several estimation methods implemented in one software allows easier comparisons 
between the results of the different methods and enables to gain more information on an 
animal’s behaviour. Because as Harris et al. (1991) pointed out already two decades ago: “[...] 
using more than one method of home-range analysis provides information on the pattern of 
space and time use [...]”.  

The only free software, of that we are aware of, which fulfils almost all of the criteria 
above is the adehabitat package for R by Calenge (2006). However, as adehabiat is based on 
the R language it may not be perceived as user friendly and is likely more appealing to the 
scientist than the wildlife manager. Besides its strength, such as (i) the inclusion of all well-
known and newer home-range estimation methods, (ii) flexible methods for data manipulation 
and display, and (iii) a wide range of methods for statistic analysis, R and adehabitat provide 
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only limited functionality for spatial analysis methods as offered within a desktop GIS1. 
Hence, our objective was to develop a new toolbox for Home Range Analysis and Estimation 
(HoRAE) for observation data from GPS collars, that is a) user friendly, b) includes most of 
the new estimation techniques, and c) integrates with a GIS - preferable a free and open 
source GIS so as to avoid proprietary (and costly) dependencies. In the following we will 
present the HoRAE toolbox. We describe first its functionality and later discuss points that 
are important for the use of the toolbox including data requirements, methods for parameter 
selection, and implementation limitations.  

Software Functionality 

The HoRAE toolbox was implemented as an extension for OpenJUMP GIS (Steiniger and 
Bocher 2009). The toolbox itself uses general processing functions from OpenJUMP and 
raster data processing functionality of the Sextante toolbox (Olaya 2008). We first list home 
range estimation functions which produce either a utilization density grid or polygons that 
delineated the home range. Then we describe a set of home range analysis functions that 
should allow to better explore and characterize the animal movement data and the derived 
home range/utilization density grids. We like to mention that the design of the toolbox with 
respect to its basic functionality was inspired by ABODE, a free toolbox for home range 
analysis in ArcGIS by Laver (2005). 

 Home Range Estimation Functions 

The current version of the toolbox contains six different home range estimators (Table 1). 
With respect to the input data type we can classify those into point-based home range 
estimators and line- or track-based estimators. Especially the latter are useful for GPS collar 
data, as they can utilize additional information that comes with such type of data; for instance 
information on recording time and the possibility to calculate velocity vectors between 
subsequent GPS points.  

The point-based estimators include (i) the basic version of the well-known Minimum 
Convex Polygon (MCP) approach that is extensively described and analysed by Burgman and 
Fox (2003) and Nilsen et al. (2008). We call it only the basic version as we did not implement 
outlier-removal techniques as described in Harris et al. (1991). (ii) The second approach 
implemented is the Local Convex Hull method by Getz and Wilmers (2004), which  is 
essentially a localized version of the MCP approach with some post-processing, i.e. unioning 
of the hulls. Getz et al. (2007) present three different methods to define the neighbourhood of 
a point to construct the local hulls: (ii-a) a so-called adaptive LoCoH uses all those points 
around a center point for the local convex hull, those sum of distance is smaller than a 
distance a, (ii-b) a k-nearest neighbour approach using all k nearest points from the center 
point, and (ii-c) a radius-based LoCoH using all points within a circle of radius r from the 
center point to build the points local convex hull. (iii) As third method we implemented the 
well known point-based Kernel Density Estimation (KDE) approach that is thoroughly 
described in Silverman (1986) and Powell (2000), and recently re-evaluated in Kie et al. 
(2010).  

The MCP method results in a polygon delineating the home range. The LoCoH approaches 
are able to calculate utilization density-like grids, so that different contours/home ranges for 
different probabilities of use can be derived (e.g. p = 95% is a value commonly used in the 
literature; Powell 2000). Also the KDE approach, as its name already suggests, is able to 
calculate density grids that can be transformed/re-scaled into probabilistic utilization surfaces. 

                                                 
1 We like to note that the free Quantum GIS provides an interface to adehabiat, see 
http://www.qgis.org/wiki/HomeRange_plugin  
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To derive volume contours from the utilization density grids - or polygons that are formed by 
the contours - we also provide a contouring function within the toolbox. As suggested by 
others this function evaluates the volume (i.e. the density values) under the surface to derive a 
probability contour, and not the area of the grid cells. 

Three line-based estimators are implemented that can use time information about the point 
recording for parameterization: (iv) A new developed line-buffer approach applies positive 
and negative buffer operations to movement tracks. Negative buffers are applied to remove 
portions of the home range stemming from exploratory walks by the animal, i.e. occasional 
sallies. The method can deliver a simple home range polygon, but is also able to create 
density grids based on buffer overlap counts. (v) A further home range estimator implemented 
is the Brownian Bridge (BB) estimator that has been proposed by Bullard (1991) and refined 
with respect to its parameterization by Horne et al. (2007). The Brownian Bridge estimator is 
based on a probability model that describes the possible location of a particle for the 
Brownian motion. For the home range estimation the GPS locations are considered as 
observed particle locations. To implement the function in our toolbox we ported the code that 
was distributed with the R adehabitat package (Calenge 2006). Result of the application of the 
BB method is a grid that contains probability values for each cell. (vi) Finally the last home 
range estimation method implemented is a scaled Line-based KDE approach that is described 
in Steiniger and Hunter (submitted). It essentially resembles a moving (bell-shaped) kernel 
along the segment that connects two movement locations. The size of the kernel is scaled with 
respect to its distance from the segment end points to obtain a bone-like shape for the 
probability of use (c.f. the error-band model in GIS; Caspary and Scheuring 1993). This bone-
like shape should model the utilization density better than an equal probability of use along 
the track segment. Since the approach is based on the point KDE it will also return a 
utilization density grid as result.  
 

Table 1. Implemented Home Range Estimators. 
Estimation Method Brief Description Parameterization Options 

Point-based   
(i) Minimum Convex 
Polygon (MCP) 

Convex hull of points. No parameter, but see Harris et al. (1991). 
 

(ii) Local Convex 
Hull (LoCoH) 

Union of local convex hulls of points. Dependent on neighbourhood selection method, 
either distance a, circle radius r, or k 
neighbours. 

(iii) Kernel Density 
Estimation (KDE) 

A weighted kernel function is moved over a 
raster and point values summed. 

Bandwidth/ window width h,  
Kernel function. 

Line-based   
(iv) Line Buffer (LB) Positive and negative buffering and union of 

the lines between two subsequent GPS points. 
Buffer distance r 
 

(v) Brownian Bridge 
(BB) 

Uncertainty model for the location of a particle 
described by the Brownian motion model. 

BB parameters σ1 and σ2,  
with σ1 assumed to be GPS accuracy. 

(vi) Scaled Line-KDE 
(SLKDE) 

A point-based kernel is moved along a 
rasterized line and scaled according to its 
distance from the end points.  

Bandwidth/ window width h,  
Kernel function1,  
Scaling function  

1) The choice of the kernel function for SLKDE is not implemented in the toolbox yet and the biweight kernel is used by 
default.  

Home Range Analysis Functions 

As described earlier the home range analysis functions should help to gain more insight into 
the movement data. Currently five different analysis functions are available:  

Visualization - A visualization function that calculates and displays: a) the GPS movement 
track, b) bounding boxes for the daily travel – each box including only the points of one day 
(Fig. 1), c) the (median) average daily travel distance (MTD), and d) the reference bandwidth 
href that can be used for the kernel density estimation methods (see Silverman 1986, Worton 
1989). 
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Asymptotes - A function that allows to check if the area of the home range calculated 
shows an asymptotic behaviour if more (GPS) points are added to the dataset (Harris et al. 
1991, Laver 2005). Adding points should be done sequential if the points have been recorded 
sequential as well (i.e. with GPS collars, see Fig. 2).  If no recording information is available, 
then points should be added randomly (Harris et al. 1991). Asymptote analysis can be helpful 
in two cases: a) it shows if the number of sampling points (observations) is sufficient for the 
home range calculation or if more points are needed. I.e. more points are needed if no 
asymptotic behaviour occurs. b) An asymptote plot allows to study movement behaviour of 
one animal between seasons of the year. For instance with sample data of grizzly bears we 
could see that during the summer months one bear strongly extended its home range in 
comparison to spring and autumn. The toolbox allows asymptote analysis for sequential data 
with three home estimators: MCP, Line-Buffer and KDE. Asymptote analysis by adding 
random points has been implemented for MCP only. We chose to implement asymptote 
analysis for those three methods as they are not as computational costly when run several 
hundred times, compared to BB and Scaled-Line KDE (see next section). 

Core area – The core area of a home range contains those parts of the home range that an 
animal uses more often than if the utilization would be uniformly random over the whole 
home range area (Powell 2000). Samuel and co-authors (1985, 1988) described a first 
approach for a quantitative analysis based on point data. However, we implemented two 
different methods for the determination of the probability pcore that defines the core area. Both 
methods are based on the evaluation of a graph that displays probability of use vs. area. The 
first version generates such a graph from evaluating the density/probability of use for each 
cell of the raster grid and is described in Seaman and Powell (1990). The second version is 
partly described in Harris et al. (1990) and is based on the calculation of contours for certain 
probability values, e.g. p = 5...95% in steps of 5%, and the area the contours enclose. The 
method for choosing the core probability was proposed in Seaman and Powell (1990), i.e. 
plotting the curve of area vs. probability of use and selecting the probability where this curve 
and the diagonal line from (area = 100%, probability = 0%) to (area = 0%, probability = 
100%) are most distant from each other. We note that in our experiments both methods often 
gave different results, i.e. different probabilities that define the core area. However, when 
there are large differences, e.g. 10% or more, then we suggest using the value from the 
contour-based method as its computation is more comprehensible. 

Skeletons – We implemented a function that calculates skeletons of the home range 
polygons (Haunert and Sester 2008). This should allow to visually compare if home ranges 

 
 
Figure  1. OpenJUMP GIS with home range analysis functions. Here the GPS tracks and bounding boxes of 
daily movement are shown.    
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calculated with different methods, different parameters, or for different seasons are similar or 
not, e.g. by comparing the branches of the skeletons. However, further work on similarity 
analysis of home ranges is still needed. 

Home Range Classification – It may be useful to further analyse the derived home range 
polygon by classifying parts of it. For instance if the distance between the contour of the core 
area and the (p = 95%) contour of the home range is known, then one can derive a 
classification of the home range into (i) core zones, (ii) home range edges, (iii) unconnected 
home range patches, and (iv) corridors that connect home range cores, as described in 
Steiniger (forthcoming) and Voigt et al. (2007).  

Using the Software 

The following subsections address several points that are important when home range 
estimation and analysis is performed with the toolbox, but contain also general comments on 
the application of the estimators. We first discuss conditions that should be known if using a 
particular home range estimator, then we will address input and parameterization of the 
estimators, and finally discuss problems that we encountered during the implementation. 

Conditions on the Use of Home Range Estimation Methods 

The six home range estimators implemented use different modeling techniques for the 
estimation, and subsequently assume certain conditions on the observation data. As the name 
of the MCP method already indicates, the method should only be applied to species data 
where it is known that their home range may be of convex shape. For instance grizzly bears 
don’t have convex home ranges (Steiniger et al. 2010), whereas herpetofauna species may 
have (Row and Blouin-Demers 2006). Thus, the application of MCP for grizzly bears results 
in biased size and shape descriptions and may only be useful for initial visualization purposes 
- but not for detailed analysis. A further issue with MCP is that the boundaries will be formed 
by the outer observation points, i.e. there is no “buffer” around them that demarks possible 
animal occurrence as with other estimation methods, e.g. point-KDE, Brownian Bridge (BB), 
line-KDE, and Line-Buffer. This problem is also occurring for the LoCoH approach. 

 
 
Figure  2. Screenshot showing GPS points, movement path, a line-KDE density raster, core and p = 95% 
contours, and asymptote plot.    
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In comparison to MCP the other methods such as BB, point-KDE, Line-KDE, LoCoH and 
Line-Buffer are able to generate utilization density grids. Hence, in theory they can be used 
with multi-modal, non-uniform data that can represent non-convex and disjunct home ranges 
(Seaman et al. 1999). These five estimation methods should then be able to resemble the 
corresponding distributions. However, there are model assumptions for the BB and KDE 
methods: First, the BB approach is essentially an uncertainty model, i.e. does not model 
density of use. An effect of this is that the uncertainty value, which we aim to use as density 
value, is actually zero at a GPS location. However, in practical applications with ‘good’ 
observation point distribution the BB results are comparable to those of KDE methods since 
modelling focuses on the track segment and not the observation point (Steiniger and Hunter 
2010). Second, the BB model assumes that the data stem from a random walk process that has 
a normal distribution (Horne et al. 2007). Third, the KDE approach may impose an 
assumption on the point distribution with respect to the selected kernel function. For instance, 
if the kernel is chosen to be of Gaussian form, then a Gaussian distribution of the points is 
assumed. 

  For the work with the toolbox it is also important to know that in comparison with other 
software the point data sets are not standardized and/or normalized with respect to their 
variance in x and y locations. Only zero-distance points are filtered, for example when the 
Least-Squares Cross-Validation method for the determination of the KDE bandwidth is used. 
Also, there is no option for the shifting of points if the input data are discretized, e.g. on a 
grid, as available in the ABODE toolbox by Laver (2005). Finally we note that we did run the 
estimation functions of the toolbox with GPS datasets containing up to 2000 points. But 
handling of more points should be possible when appropriate computer memory (RAM) is 
available.  

 Parameterization of Methods 

Except the MCP method all home range estimators require the setting of one or multiple 
parameters as summarized in Table 1. An additional parameter that is not mentioned in Table 
1, but needs to be set for all methods that produce a utilization density grid, is the cell size for 
the grid. Rasterization with different cell sizes will produce slightly different results. In the 
following we discuss for the estimation methods the available options for setting parameters: 

LoCoH – Dependent on the neighbourhood selection method, i.e. adaptive, radius, or 
number of neighbours, a single parameter needs to be provided. The toolbox doesn’t contain 
any automated method that proposes parameter values. Hence, the parameter needs to be set 
manually and should be found iteratively based on qualitative (e.g. number of holes) or 
quantitative criteria (e.g.: values for area and shape index). For this purpose Getz et al. (2007) 
make suggestions for initial parameter values. 

Point-KDE – The point-based KDE approach requires choosing the shape of the kernel 
function and providing a bandwidth/window width h that determines the smoothness of the 
generated density surface. Different kernel functions have been implemented in the toolbox, 
e.g. biweight, Gaussian, triangular functions etc. (see Silverman 1986). As noted by 
Silverman (1986, pgs. 43 and 86) changing the kernel function does not change the results as 
much as changing the bandwidth. The toolbox implements only a fixed bandwidth approach, 
since Seaman and Powell (1996) and Blundell et al. (2001) found that the adaptive bandwidth 
approach does not provide ‘better’ results. Besides using a fixed bandwidth the value h is used 
for both coordinate directions x and y in our implementation.  

Several automated methods that help choosing the bandwidth h are provided in the 
toolbox: (i) the reference method delivers a value 1/6

ref xyh nσ −= ⋅  (Silverman 1986) that 
assumes a normal distributed point cloud. (ii) The Least-Squares Cross Validation (LSCV) 
method returns a value hLSCV that is derived with a step-wise minimization approach over 
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different bandwidths with respect to the least-squares error (Worton 1995, Sheather 2004). 
(iii) As a third method we implemented the ad-hoc method used in Berger and Gese (2007) 
and Jacques et al. (2009). had-hoc is the last bandwidth value that keeps the home range 
continuous before the home range is split into two home range patches, i.e. the method is 
based on biological meaningful criterion. In our case we test at which value of h the p = 
99.5% contour/region splits, and not for the p = 95% contour as in Berger and Gese (2007) 
and Jacques et al. (2009). Hence, if the continuous home range is wanted the 99.5% contour 
needs to be calculated from the resulting grid, since the 95% contour will contain the split 
already. The bandwidth may not only be derived from data-driven methods. Several authors 
(e.g. Powell 2000, Laver 2005) note that h may also be chosen based on expert knowledge, 
for instance the known location error, or the radius of perception of an animal. 

Scaled Line-KDE (SLKDE) – The SLKDE function requires an orderable set of points, for 
instance by providing a recording ID. Since the SLKDE is based on the point-KDE approach 
the input parameters kernel function and bandwidth are needed as well. However, currently 
there is only one kernel function implemented (i.e. the biweight kernel), and the bandwidth h 
can be and should be set based on time information that comes with the GPS tracking data. As 
a third parameter the scaling function needs to be selected (Steiniger and Hunter, submitted).  

With respect to choosing the bandwidth h we provide a function that calculates the median 
of the average daily travel distance (MTD) based on the track information. A requirement for 
the calculation of hmtd is that the recording day for each GPS point is provided. Besides hmtd 
the reference bandwidth href can be used as well. However, in certain instances hmtd may be 
(much) larger than href. If that is the case, then we recommend to use href to retain more detail 
for the home range outlines.  

The scaling function defines how strong the bone-shape of the probability contours for one 
segment of the GPS track is. We performed testing with four point datasets obtained from 
grizzly bear GPS collars to compare two scaling functions; one with a scaling range of 
[0.5...1.0] and a second with [0.707...1.0] (Steiniger and Hunter, submitted). Those tests did 
not reveal major visual differences for p = 95% contours. But further testing with additional 
datasets and data from different species is needed before any conclusive statement can be 
made.   

Line-Buffer – The line buffer approach requires only one parameter, the buffer size. Since 
it is a line-based estimation approach as well, like SLKDE, we recommend to use the median 
value of the average daily travel distance as buffer size. This approach also requires the 
provision of a GPS point attribute that allows to order the points with respect to its recording. 
We note that the negative buffer operation, which is used to remove sallies, uses the input 
buffer value and multiplies it with m = 1.10. 

Brownian Bridge (BB) – To utilize the BB approach the given GPS points need to be 
orderable, e.g. by providing a recording ID, and the time of recording must be given in 
seconds for each point. The time information will be used to calculate the time differences (in 
seconds) between two subsequent observation locations. Aside from these location attributes 
the BB approach requires two input parameter, denominated as σ1 and σ2. It has been 
suggested by Bullard (1991) and Horne et al. (2007) that the second value σ2 is set according 
to the uncertainty of the observation point, e.g. σ2 = 30 m for GPS collar data. Assuming that 
σ2 is fixed for the whole data set Horne et al. (2007) propose a likelihood function and an 
optimization routine to estimate σ1. We implemented that likelihood function in the toolbox, 
using the code from the adehabitat package. But in opposite to Horne et al. (2007) the 
minimum of that function is not obtained via an optimization procedure, but by choosing the 
smallest value from function values calculated for a range of σ1.   

For the BB approach as well as for line-KDE approach results can be different for the two 
options of track-segment rasterization (see also Steiniger and Hunter, submitted). For the first 
type of processing, the so-called: rasterize-first approach, all track segments are rasterized 
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together in a first step. Then the density calculations are performed for each grid cell of the 
raster. For the second type of processing, the so-called segment-wise approach, each segment 
is rasterized separately and the density calculation for each grid-cell performed - obtaining a 
small raster with the limits of the segment. Then the single-segment raster is “added” to a 
final (big) raster and the next track segment is processed. In Steiniger and Hunter (submitted) 
it is shown that the contour lines for the line-KDE look different. For instance, the centre of 
density for two subsequent track segments that meet in an acute angle is shifted. In the 
segment-wise approach the density center is above the connection point that is part of both 
segments. In the rasterize-first approach the center is shifted towards the middle between the 
track segments.  

Discovered Problems with Algorithm Implementations 

During the implementation and testing with grizzly bear collar data we discovered several 
problems that should be known by the software user. These issues include computational 
complexity/speed, numerical limitations, and problems with BB core area calculations.  

Processing Speed – In particular the line-based estimators require many more calculations 
than the point-based methods. Subsequently computation times are much longer. For instance 
when we processed datasets that contained circa 1,500-2,000 GPS points the point-KDE and 
the MCP estimators required only a few seconds, whereas the line-KDE and the Brownian 
Bridge estimation run for 13 minutes and 21 minutes respectively (see Table 1 in Steiniger 
and Hunter, submitted). However, the Line-buffer approach is about as fast as the point-based 
estimators. 

Failure of LSCV and Numerical Limitations – The LSCV approach failed for about 20 bear 
datasets that we tested (all with more than 500 GPS points), delivering too small values in 
comparison with href. As a result the calculated home ranges consisted of small circles with 
one circle for each GPS point. The potential that LSCV results highly vary and may not be 
usable has been also noted by Sheather (2004), Hemson et al. (2005), Huck et al. (2008) and 
Kie et al. (2010). The problems may in particular be bound to datasets with more than 150 
points and for clumped point distributions. Aside from the LSCV failures we noticed 
numerical problems when calculating the LSCV score CV(h), as in Worton (1995), with our 
implementation using JAVA and a 32-Bit operating system. In particular the calculation of 
the expression ex will result in wrong values for CV(h) if x > 709 due to the 32-bit precision 
limits. This problem does not only occur for the calculation of the LSCV scores but also for 
the probability calculations of the Brownian Bridge approach, since using a normal 
distribution requires evaluation of ex as well. Here the effect is in particular visible in the form 
of jumps in the graph of the likelihood function (Fig. 3). As a result the parameter σ1 may be 
incorrectly obtained using the implemented minimum-value search and grid values may be 
incorrect too.  

Failure of Core Area Calculation for Brownian Bridge Results – When we calculated pcore 
based on the (density) grid produced with the BB approach, then we sometimes obtained 
values that have been around or larger than p = 95%. Both calculation methods, but in 
particular the cell-based method, returned such high p values. The reason for this behaviour 
may be the shape of the generated density distribution, i.e. if a profile perpendicular to a 
single track segment is generated, then long tails of small values are visible. This may also 
explain why Huck et al. (2008) found the calculated home-range for the p = 90% contours 
nonsensical, i.e. too big, and instead used the p = 40% contours. As a consequence care needs 
to be taken when knowledge gained from and methods developed for KDE are applied to BB 
results. 
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Software Distribution 

The Home Range Analysis and Estimation (HoRAE) toolbox for OpenJUMP is distributed 
under the GPL license (www.gnu.org), a free and open source license (Steiniger and Hay 
2009). Hence, the source code is delivered with the toolbox and the toolbox can be modified 
and re-distributed under the GPL license terms. This also gives others the option to test and 
improve existing functionality and to contribute new functions. For instance, (i) the newly 
developed Geo-Ellipse for density estimation by Downs (2010) could be implemented, (ii) 
auto-correlation measures should be added (Blundell et al. 2001, Fieberg 2007), and (iii) the 
integration of movement pattern analysis methods from Laube et al. (2005) may be useful as 
well.  

As the HoRAE toolbox needs the Sextante libraries we generated a pre-packaged version 
of OpenJUMP that can be downloaded from 
http://sourceforge.net/userapps/mediawiki/mentaer/ . Information on the use of the toolbox 
can be found on the related wiki. However, as there is no comprehensive introduction yet for 
home range estimation and analysis with our toolbox we refer the reader to the ABODE 
documentation by Laver (2005) (also on the wiki).  
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