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Abstract  Utilization distributions (UDs) can be used to describe the intensity with which an 
animal or human has used a certain geographical location. Within the domain of wildlife 
ecology, a density distribution model represents one way to describe an animals’ home range. 
Several methods have been developed to derive UDs, and subsequently home ranges. Most of 
these methods, e.g. Kernel Density Estimation (KDE), and Local Convex Hull methods, have 
been developed with point-based datasets in mind, and do not utilize additional information 
that comes with GPS-based tracking data (e.g., temporal information). To employ such 
additional information we extend the point-based KDE approach to work with sequential 
GPS-point tracks, the outcome of which is a line-based KDE. We first describe the design 
criteria for the line-KDE algorithm. Then we introduce the basic modelling approach and its 
refinement through the introduction of a scaling function. This scaling function modifies the 
utilization distribution so that a bone-like probability distribution for a single GPS track 
segment is obtained. Finally we compare the estimated utilization distributions and home 
ranges for two datasets derived using our line-KDE approach with those obtained using the 
point-KDE and Brownian Bridge (BB) approaches. Advantages of the line-based KDE by 
design are (i) a better representation of utilization density near GPS points when compared 
against the BB approach, and (ii) the ability to model and retain movement corridors when 
compared against point-KDE. 

Keywords  line-based kernel density estimation, movement analysis, utilization distribution, 
home range 

1. Introduction  

Wildlife ecology research has frequently been interested in understanding where an animal 
has been, or will be in the future. These questions are also important within the domain of 
location-based services (LBS), where the subject matter is typically human movement. For 
wildlife ecologists representing ‘space utilization’ may be beneficial for answering questions 
about why an animal spends time at a certain location, e.g. searching for food, sleeping, 
mating, etc., and hence useful for building behavioural models, or identifying natural reserves 
for endangered species (Powell, 2000; Kie et al., 2010; Stenhouse and Munro, 2000). For 
researchers and providers of location-based services such space utilization models can aid the 
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identification of daily travel patterns that can then be used to provide personalized (push & 
pull) services to a user (Steiniger et al., 2006; Nanni et al., 2008), such as information on 
traffic conditions between home and work place, or advertisements on specials by shops along 
a users daily commute.  

A Utilization distribution (UD) can be derived from occurrence data, i.e. sightings or 
tracking information, and can be used to describe the intensity that an animal or human uses a 
certain geographical location. In wildlife ecology UDs are traditionally derived with 
probabilistic approaches, such as Kernel Density Estimation (KDE) applied to point sets that 
describe animal sightings (Harris et al., 1990; Worton, 1995; Powell, 2000). The KDE method 
generates a 2 dimensional (2D) probability surface represented by a grid of regular spaced 
locations (cells), which describes the probability (cell value) of an object being at a particular 
location (cell) in any part of its home range (Powell, 2000). The term “home range” is used 
here follows Burt’s (1943) definition, “[... the] area traversed by the individual in its normal 
activities of food gathering, mating, and caring for young. Occasional sallies outside of the 
area, perhaps exploratory in nature, should not be considered as home range.”  

To account for occasional sallies, only a certain probability of use is considered when 
deriving a home range. For instance in the literature a home range is often considered to be 
the area contained within the 95 % contour (i.e. isopleth) calculated as 95 % of the volume of 
the probability surface (Powell, 2000). However, Kie et al. (2010) point out that home range 
and utilization distribution are often used interchangeably despite subtle differences in their 
definitions. 

Besides the use of KDE to derive utilization distributions for home range analysis (Worton, 
1989; Seaman and Powell, 1996) other methods for generating UDs have been developed 
relatively recently. These include the Local-Convex Hull (LoCoH) approach by Getz and co-
workers (Getz and Wilmers, 2004; Getz et al., 2007), and the Brownian Bridge approach 
developed by Bullard (1991), which was applied and refined by Horne et al. (2007) and 
Calenge (2006) for use in animal home range analysis. Furthermore a Geo-Ellipse approach 
has been presented by Downs (2010) – but not with an application to animal home range 
estimation. However, Long and Nelson (2012) describe a very similar ellipse method for the 
calculation of home ranges and apply it to simulated tracking data. Other frequently used 
approaches for home range estimation, such as the Minimum Convex Hull/Polygon (MCP, 
see Burgman and Fox, 2003; Nielsen et al., 2008), the characteristic hull (Downs and Horner, 
2009), parametric models (see Boulanger and White, 1990; Powell, 2000), or buffer-based 
approaches (Steiniger and Hunter, 2012), are able to generate home ranges described by one 
or several polygons, but do not generate utilization distributions. However, surrogates for 
density surfaces can be derived for some of these approaches. Getz et al. (2007) show that 
local convex hulls can be used to generate isopleths, as have Steiniger and Hunter (2012) for 
buffer-based approaches.   

It is important to note that KDE, MCP, LoCoH and parametric approaches have been 
designed for and applied to location datasets derived using traditional observation methods, 
such as VHF telemetry and sightings. These point datasets typically contain small numbers of 
observations (50-300) and additional information, such as the exact time of recording, the 
direction of travel, or velocity of the moving object, may not be available, or is sparse.  

The introduction of GPS to the wildlife community for tracking has enabled researchers to 
acquire datasets containing several thousands of points per field campaign. This has led to 
new research questions. A questions that has been addressed to some extent, is: How do 
existing estimators perform with these new datasets? I.e., it is necessary to test existing 
estimators to determine if assumptions are still met, and if they are able to handle large 
volumes of data (but see Hemson et al., 2005; Börger et al., 2006; Huck et al., 2008). Another 
question is: How can estimators utilize additional information available via GPS tracking? 
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Two recently developed utilization density estimators that consider the time an observation 
is recorded are the previously mentioned Brownian Bridge approach (Horne et al., 2007) and 
the Geo-Ellipse approach (Downs, 2010; Long and Nelson, 2012). The Geo-Ellipse approach 
has been presented only very recently, i.e. it has not been tested with a diversity of LBS or 
animal location datasets yet. The Brownian Bridge approach has undergone some testing that 
has highlighted advantages (Horne et al., 2007), and weaknesses (Huck et al., 2008, and our 
tests in Section 4). Although the BB approach is promising, we have concerns that the basic 
assumptions underlying the approach are derived from uncertainty modeling, as BB 
fundamentally describes the probable location of a particle experiencing Brownian motion. 
Hence, the BB model was not designed originally to model space utilization. A consequence 
this is that the expected probability for the bridge is zero at each GPS point (see Fig. 2 later). 
Despite Bullards (1991) effort to overcome this issue by adding a kernel to the bridge 
endpoints (e.g. the GPS points), the parameterization of the BB remains challenging if the 
uncertainty model is to be used to model space utilization or probability of use. 

The aim of this article is to present a third estimator for GPS datasets. As such, our 
estimator for utilization distributions extends the point-based kernel density estimator. 
However, the estimator adopts concepts from the Brownian bridge and geo-ellipse 
approaches, i.e. it makes use of GPS-track segments as the base-object. After introducing the 
design specification in the next section we outline how the line-based Kernel Density 
Estimator (line-KDE) works, and later compare results for a test dataset with results obtained 
for the BB and point-KDE approaches.  

2. Design Specification for the Utilization Density Estimator 

The utilization distribution/density estimator has been designed with certain data and 
applications in mind, in particular, GPS-tracking data and animal home range analysis. All in 
all four different sets of criteria where identified: 

A - GPS track vs. (Road) Networks – The estimator should model densities from tracking 
data of the following type: GPS points are connected as temporal sequences to form a chain. 
Under- and overpasses of that chain can exist, but the chain will not contain junctions at 
which the track divides into two or more chains. This specification is important since it does 
not guarantee that our estimator can be applied to planar networks, such as road networks. In 
contrast the kernel density estimator developed by Okabe et al. (2009) for road networks 
requires a planar network where no under- or over-passes exists, i.e. lines do not intersect 
except at junctions. Since road networks have junctions, Okabe et al. (2009) model two cases 
of estimator behaviour at junctions, a discontinuous and a continuous case (see also Produit et 
al., 2010). This is not necessary for our use case. Further, Okabe et al. (2009) also define that 
the network is not directed. In contrast, GPS track data are. Based on the specifications we 
developed a small reference dataset shown in Fig. 2, image A.  

With respect to the model developed we also required that the model conforms to the 
following requirements: (i) the density/utilization value at a node where two line segments 
touch is the same as for a track starting or end point, (ii) density values add-up at crossings of 
line segments, (iii) the peak of the density for two subsequent line segments connecting in a 
acute angle should be at the connecting point of the two line segments, and (iv) if two lines-
segments within the bandwidth (i.e. kernel size) run parallel to each other (no matter what 
direction both have), then density values are added as well. These rules informed the creation 
of our reference dataset (see Fig. 2, image A). 
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B - Ecological considerations – Since the application focus of the estimator is animal home 
range analysis we define that: (i) the estimator must produce a density/utilization surface, so 
that different values of probability of use, i.e. contours, can be derived, (ii) the estimator 
should allow a user to identify / model travel corridors (Rosenberg et al., 1997; Mabry and 
Barrett 2002; Bennett, 2003) as they are in our opinion an important part of the home range 
and home range analysis. This criterion has been introduced since point-based KDE is not 
able to uncover information on corridors if the GPS point sampling frequency is 
inappropriate, i.e. if the sampling period is too large (e.g. one or two sampling locations per 
day). (iii) The estimator should be able to respect the shape of the point dataset, i.e. contours 
created from the density grid should resemble the shape of the point-distribution as outlined in 
Downs and Horner (2007, 2008). We note here, that we have not yet tested if this criterion is 
fulfilled – but we assume that our model will; in particular when the kernel bandwidth is 
chosen based on the average daily travel distance (see below) 

C - Uncertainty vs. utilization - The estimator should not model uncertainty, as the 
Brownian Bridge approach does, but utilization and probability of occurrence. Subsequently: 
(i) GPS points will not yield a zero density/probability value but a value similar to that 
obtained with point-KDE, and (ii) the density/probability value along the line segment will 
decrease from the end points toward the (geometric) center of the segment. As a result the 
contours generated from the utilization function for a single line segment should resemble a 
bone-like shape instead of the convex buffer shape that is obtained when buffering a straight 
line in a GIS (compare Fig. 1, image A — where the outline forms a convex hull similar to a 
GIS buffer operation, versus Fig. 1 images B & C where the outline narrows towards the 
center of the line segment resulting in a bone-like shape). 

D - Use of additional (time) information – To determine the (bandwidth-) parameter of the 
estimator it would be beneficial to utilize the time information of the GPS points. This is the 
approach adopted by Horne et al. (2007) for their Brownian bridge implementation and 
Downs’ (2010) geo-ellipse method. We have found that the average daily travel distance is 
also a promising approach for determining bandwidth (see Steiniger and Hunter, 2012). 

3. A Scaled Line-based Kernel Density Estimator 

In the following we will describe the basic approach that was developed for the calculation of 
utilization densities from GPS tracking data. The estimator is based on the well-known point-
based KDE approach to respect specification B-i, the creation of a utilization surface. 
Extending the KDE approach to work on lines as base objects, instead of points, should 
ensure that specification B-ii, modeling corridors, and C-i, non-zero density values at GPS 
point locations, are met. We then introduce a scaling function used to achieve a bone-like 
shape for contours of the utilization function of a single line segment (specification C-ii). 
Finally, we will address options for parameter selection (specification D). 

 
 
Fig.  1 Probability (25, 50, 75, 95 %) of utilization contours for line-KDE and scaled line-KDE for a single line 
segment – scaling A: sf ! 0.5,1.0"

#
$
%  and B: sf ! 0.5,1.0[ ] . For a description of the scaling variants see Section 

3.3.  
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3.1 Line-based Kernel Density 

The line-based kernel density estimator (line-KDE) for GPS tracks is fundamentally built on 
the point-based KDE. The basic equation that describes the bivariate point-based kernel 
density estimate is (Silverman, 1986 pg. 76; Worton, 1989): 

 2
1

1 1ˆ( ) ( )
n

i
i

f K
nh h=

⎧ ⎫= −Χ⎨ ⎬
⎩ ⎭

∑x x (1) 

where n is the number of randomly sampled observations Xi...Xn, h is the bandwidth 
parameter, and K is the kernel function. Density estimation can be considered a continuous 
form of binning data, similar to that done during histogram estimation. To obtain a 2D kernel 
density estimate for a point dataset in praxis a 2D kernel function K of a particular shape and 
with certain properties is chosen (e.g. a Gaussian function; see Silverman, 1986; and Scott, 
1992, for a range of functions and properties). A raster with a user-defined cell size s is 
created that covers all observations, whereby s is smaller than h. Then the kernel function is 
placed over each observation Xi. The 2D kernel function is scaled according to the bandwidth 
h. For each grid cell xj that is within the window defined by h the (weighted) kernel value 
ˆ (x )jf  is calculated with respect to the distance dij to the observation Xi (i.e. x Xji j id = − ); 

with weights previously assigned to each Xi. Typically a weight of 1 is given to tracking data, 
but the weight may differ in cases where Xi represents a set of points. If a raster cell already 
contains a density value ˆ (x )jf , from an earlier kernel calculation of a close by observation 

point Xk≠i, then the new value ˆ (x )n jf is added to the existing value, i.e. 
ˆ ˆ ˆ(x ) (x ) (x )j j n jf f f= + .  

The line-KDE is based on the previously described point-based approach such that each 
line segment li,i+1 (with i = 1...n GPS points pi) of the GPS track is transformed into single 
points pr

temp(i,i+1) (i.e. rasterized with respect to cell size s), and then the point-KDE algorithm 
is applied to each of those points pr

temp(i,i+1). To avoid density values being added together 
from consecutive line segments the maximum density value between an existing cell value 
ˆ (x )jf and its newly calculated value ˆ (x )n jf is chosen, i.e. { }ˆ ˆ ˆ(x ) max (x ), (x )j j n jf f f= . 

In principle there are two approaches that can be used to implement the line-KDE approach 
for GPS tracks:  

 

 
 
Fig.  2 Reference point dataset and 25, 50, 75 and 95 percent contours for probability of utilization with point–
KDE, line-KDE (rasterize-first and segment version), scaled line-KDE (scaling A and B), and Brownian Bridge. 
For a description of the line-KDE versions and scaling variants see Sections 3.2 and 3.3. The dashed circles in 
image A mark important configurations, i.e. i - acute angle, ii - parallel tracks, iii - crossing tracks.  
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• rasterize-first - the complete track of segments l1...n is rasterized and the point-KDE 
is calculated; or  

• segment-wise - each segment li.,i+1 is rasterized individually, and the raster ri.,i+1 is 
calculated using the point-KDE. Then the rasters ri...n (li,i+1) are added.  

In the latter case when the rasters ri,i+1 and ri+1,i+2 are added it must be ensured that the 
density values derived for the observation point Xi+1 , which connects the segments li,i+1 and 
li+1,i+2, do not aggregate (specification A-i). This can be achieved by subtracting the density 
raster of the previous line segment ri,i+1 from ri+1,i+2 before adding ri+1,i+2 to the final density 
raster.  

With respect to specification A-iii we note that the rasterize-first approach will yield a 
translated center of maximum density for two subsequent line segments li,i+1 and li+1,i+2 that 
connect with an acute angle, i.e. the maximum density value will not be at the GPS point Xi+1 
that is connecting both track segments (compare Figure 2, images C and G). From visual 
inspection the rasterize-first approach appears to be applied in ESRI’s ArcGIS product. 
However, both approaches, i.e. segment-wise and rasterize-first, ensure that densities are 
added when line-segments of the GPS track cross or run parallel to each other (specifications 
A-ii and A-iv). We finally note that this approach does not result in a normalization of the 
volume. Hence, probabilities cannot directly be measured from the raster, but pseudo 
probability contours can be derived. 

3.2 Scaling approach 

In design specification C-ii we defined that density values for a single line segment should 
decrease towards the geometric middle of the line segment, since we think that this models 
the probability of space utilization more accurately. Contours generated from a utilization 
density grid derived for a single line segment should resemble a bone-like shape. To retain a 
bone-like shape we apply a scaling function to the kernel K that was initially developed by 
Caspary and Scheuring (1993) for the line error-band model (see also Shi et al., 1999, for a 
similar line uncertainty model). The equation for the positional error 

iP
σ  for a line is 

according to Caspary and Scheuring (1993, pg. 108): 
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with σ being the initial error (e.g. from digitizing a line), li the length of the rasterized line 
between the line segment end points, and l the length of the line segment. The error function 

iP
σ can be used as scaling function sf in our model to modify (i.e. decrease) the probability of 

object observation in a location. When setting σ = 1.0 and defining
i i

A
x xsf σ= , we obtain a 

scaling range 0.5,1Asf ⎡ ⎤∈ ⎣ ⎦ . An alternative scaling is achieved by setting 
i i

B
x xsf σ= , 

resulting in the range [ ]0.5,1Bsf ∈ . The derived scaling value sf is then used to adjust the 

calculated density value ˆ (x )jf for each rasterized point pr
temp(i,i+1) of the line segment li,i+1, i.e. 

( , 1)ˆ ˆ(x ) (x ) ( )temp i i
j j rf f sf p += ⋅ .  

Currently scaling is only applied to the segment-wise line KDE described above, and not 
for the rasterize-first approach. In the latter approach and with the current processing strategy 
it is not possible to store configuration information to distinguish between segment crossings 
and endpoints. Subsequently it is not clear if the new and old density values of a raster cell 
should be added, or if the maximum of new and old values should be taken. It is easy to see 
from the contours in Figure 1 that scaling by sfA is less influential than for sf B, with version B 
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having a more pronounced bone-like shape. Resulting contours for the line-KDE with and 
without scaling for the reference dataset are shown in Figure 2. 

3.3 Parameterization 

The scaled line-KDE approach described in the previous two sub-sections requires three 
parameters to be defined by the user. The choice of the kernel function K (i), and (ii) the 
selection of the scaling function (sfA or sf B) can be considered of minor importance in 
comparison with (iii) the choice of the KDE bandwidth parameter h. Changing the kernel 
function has limited effect as has been pointed out by Silverman (1986, pgs. 43 and 86), and 
was also apparent in our own experiments.  

Besides the option to choose the window width h based on expert knowledge, several 
automatic methods have been proposed to calculate h for the point-based KDE. The article by 
Kie et al. (2010) includes a review on these methods. The most prominent automated methods 
for choosing h are the Reference method (with 1/6

ref xyh nσ −= ⋅ , Silverman, 1986), and the 
Least-Squares Cross Validation method (hLSCV) that is based on stepwise minimization of an 
error criterion (Worton, 1995; Sheather, 2004). As our line-KDE approach is essentially built 
on the point-based KDE, using href is one option for choosing the bandwidth. However, 
having additional information on the recording time for each GPS point allows the analyst to 
derive average travel distance of an animal per day, for example. Hence, in our experiments 
we used the median value of all average daily travel distances (of one GPS track) as 
bandwidth parameter hmdt, in addition to href. 

3.4 Implementation 

We implemented the scaled line-KDE approach in the free and open source GIS software 
OpenJUMP (Steiniger and Hay, 2009). The Sextante toolbox was coupled with OpenJUMP 
(Olaya, 2008) to deliver the basic point-KDE and raster processing functionality. The current 
implementation contains only one kernel function at this time, the biweight kernel described 
in Silverman (1986:76, eq. 4.5). We note that the kernel implementation operates without 
scaling for volume/probability. However, other kernels can be easily added, since they are 
already available for the point-based KDE. A special home-range analysis edition, 
OpenJUMP HoRAE (Steiniger and Hunter, 2012), which contains the scaled line-based KDE 
and other home range analysis method is available from  
http://gisciencegroup.ucalgary.ca/wiki/OpenJUMP_HoRAE.  

4. Comparison with other Density Estimators 

4.1 Estimators 

To evaluate the performance of the line-based KDE implemented, we compared the estimator 
with point-based KDE, and the Brownian Bridge (BB) estimator. We chose these two as we 
view them as benchmarks with respect to our design criteria, which included among others 
the ability to model travel corridors (for KDE), and to not resemble a pure uncertainty model, 
as BB does. A point-based KDE function is already implemented in the Sextante toolbox, but 
was modified to work with the tracking data (e.g. calculation of grid bounds and 
determination of href). The BB implementation we used is a port of the version implemented 
by Calenge (2006) in the R adehabitat package. However, similar to the line-based KDE we 
implemented two BB versions, one resembling a segment-wise processing approach and the 
other using a cell-based approach. To determine the two BB parameters σ1 and σ2 we 
used/ported the method developed by Horne et al. (2007). In our experiments σ1 is estimated 
by keeping σ2 fixed with 30m, whereby the value of 30m reflects the estimated GPS location 
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error (95 % confidence interval). We note that for the BB method parameter estimation 
difficulties arise from numerical problems, i.e. we have not been able to calculate en for n 
>710 with a 32-bit java machine due to precision limits. Hence, the estimated value of σ1 may 
be incorrect, and problems in the calculations may lead to different results than expected, 
given the mathematical model. 

To aid the comparison, we also calculated the probability that determines the core of a 
home range, representing areas of higher utilization. The method used is based on the 
evaluation of home range area for the x percentile contour (with [ ]2.5%,100%x∈  in 2.5% 
steps), and is outlined in Harris et al. (1990). The criterion used to determine the core 
probability was adopted from Seaman and Powell (1990) and Powell (2000) — choosing the 
longest distance from the diagonal line of the area-probability plot. Seaman and Powell’s 
(1990) core calculation approach differs from Harris et al. (1990) in that it is cell-based and 
not contour-based. In our experiments both methods often gave different results. Hence, for 
the comparison we used only the contour-based method. 

4.2 Datasets 

In addition to the artificial reference dataset that was used to control if our design criteria 
were met we also tested the implementation using two real datasets. We obtained GPS collar 
data from the Alberta Foothills Research Institute from two grizzly bears. Bear A was female 
and resides in the foothills of the Rocky Mountains within Alberta, whereas bear B was male 
and resides generally at higher elevations within the Rocky Mountains.  As such, travel paths 
and home range extents should be different. It is expected that the mountain grizzly will tend 

 

 
 
Fig.  3 The results for different utilization distribution estimators, visualized by the 95% probability of use area 
(dark grey) and the core area (light grey) for bear A. Parameters: KDE href=1240m, hmtd=2600m; Brownian 
Bridge σ1=8.30m, σ2= 30.0m. 
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to travel along valleys. Corridors that connect those valleys may be important from a 
behavioural analysis perspective.  

The dataset for bear A contained 2,215 points, and was recorded over 139 days from June 
to November during 2007. The dataset for bear B contained 1,525 GPS locations that were 
acquired over 194 days from April to November 2001. Both datasets include the time and date 
that a GPS location was recorded, and therefore the point locations can be ordered. For the 
Brownian Bridge method the time information was transformed into seconds of the year.      

4.3 Results 

The comparison was performed more or less qualitatively and visually, focussing on features 
related to shape, such as (i) shape complexity (patches, holes, smoothness of the outline) and 
(ii) area of the home range polygon. We also noted if (iii) travel corridors were observed, and 
(iv) how long calculation took (Table 1). The results for the reference dataset are displayed in 
Figure 2. Figures 3 and 4 show the results for the grizzly bear datasets. For those we have 
displayed the 95 percent contour of utilization density (a commonly accepted value in the 
literature; Laver and Kelly, 2008) and the core contour of the home range. For bear B we also 
displayed unvegetated areas (in grey) that reflect steep mountain terrain. This allowed us to 
assess if the bear traveled along valleys, and to visually compare how well the estimators 
model travel paths. 

Complexity of home range shape – When looking at the results for both datasets the shapes 
calculated using the Brownian Bridge (BB) approach are rougher, or alternatively, more 
detailed. The point-based and line-based KDE approaches tended to result in less detailed 

 
 
Fig.  4 The results for different utilization distribution estimators, visualized by the 95% probability of use area 
(dark grey) and the core area (light grey) for bear B. The background shows unvegetated areas, indicating steep 
mountain slopes. For the Brownian Bridge no core contour is shown, since the calculated utilization probability 
for the core was 95% as well. Parameters: KDE href=4900m, hmtd=3250m; Brownian Bridge σ1=19.05m, σ2= 
30.0m.   
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outlines when compared with the BB method. For the line-based approaches the bandwidth 
parameter, i.e. href or hmtd, determined the level of smoothing of the home range contours. For 
grizzly bear A the BB results appear too detailed (observe the convoluted core contours) and 
produced a higher number of patches and holes for the 95% contour (Table 1). The point-
KDE approach looks somewhat spotted as well. For bear B in the mountains, the BB contours 
seem to adapt best to the topography and indicate that travel paths are in the valleys. 
Unfortunately, for the BB a core contour could not be identified for further assessment — we 
identified the 97.7 % contour as the core contour, which was larger than the chosen 95% 
probability to delineate the home range. However, also the line-KDE with bandwidth hmtd 
appeared to adapt well to the mountain ranges, which we believe is a result of the smaller 
bandwidth when compared to the other KDE parameterizations. Interestingly, the results for 
the line-KDE with and without scaling are not that different for these datasets. If one 
compares only the 95% contour for bear A, and not the core contour, then the differences are 
negligible. Hence, the scaling has little influence on both datasets; however, it does affect the 
smoothness of the outlines and the calculation of the core area.  

 
 

Table 1. Experimental Results. 
method parameters processing 

time4 
core 

probability 
Area 
[km2] 

patches/ 
holes 

corridors 
observed 

   Bear A1    
Point-KDE href=1240m 1 sec 80% 142 9/1 No 

Line-KDE(s2) href=1240m 11min 75% 230 7/6 Yes 

S-LKDE A3 href=1240m 13min 72.5% 229 6/6 Yes 
S-LKDE A hmtd=2600m 13min 77.5% 292 1/0 Yes 

BB (s2) σ1=8.3m, σ2=30m  21min 70% 164 9/14 Yes 
   Bear B1    

Point-KDE href=4900m 1 sec 82.5% 1416 4/1 No 

Line-KDE(s2) href=4900m 11min 75% 2000 1/9 Yes 

S-LKDE A3 href=4900m 14min 77.5% 1974 6/2 Yes 

S-LKDE A hmtd=3250m 17min 77.5% 1670 6/4 Yes 

BB (s2) σ1=19.05m, σ2=30m 31min 97.5% 1182 8/8 Partly 
1) Raster cell size for bear A: 200m, and bear B: 400m. 2) s: segment-wise processing. 3) S-LKDE A: Scaled 

Line KDE-with segment-wise processing and scaling A [0.707…1.0]. 4) The algorithms where run on a Dell 
XPS Laptop with a Intel Core 2 Duo CPU 2.2 GHz, with Java 1.6 and within the Eclipse development 
environment. 

 
Modelling travel corridors – For all three datasets it is evident that the point-KDE does not 

observe travel corridors. In contrast the line-KDE method models travel corridors fairly well 
(see Figure 4, bear B, for the best example). For the same dataset it can be observed that those 
corridors are not necessarily connected with other parts of the home range, i.e. several home 
range polygons were calculated. Similar to the line-KDE the BB approach was able to model 
travel corridors (Figures 3 and 4). However, not all corridors could be modelled. This is 
observed in the results for the mountain bear B where three small polygons indicate a possible 
corridor between the two main home range patches. We note in addition that the effect of the 
zero density values at GPS locations for the BB method is particularly visible on single-track 
segments that may be corridors. The contour lines in Figure 2-D indicate zero density values, 
a result of the underlying uncertainty concept.  

Area of home range – Considering travel corridors as part of the home range has an effect 
on the calculated area. Hence, the area for the home ranges calculated with the line-KDE 
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approaches was always larger than the area for the point-KDE method (Table 1). Although 
the BB approach models corridors in part, we obtained different results for the two bear 
datasets. For bear A the BB-based home range area is larger than the point-KDE area, 
whereas for bear B the BB area is smaller than the point-KDE area. 

Calculation times – We observed remarkable differences in calculation times for the three 
utilization density estimators. Clearly the fastest approach is the point-KDE taking on average 
only one to two seconds to produce a grid for 1,500-2,000 GPS locations (Table 1). The 
segment-wise line-KDE approaches required 10 to 20 minute run times. In contrast, the 
rasterize-first line-KDE was comparably fast, taking three seconds (data not shown). 
However, we wish to note that the rasterize-first version does not allow for scaling, and that 
density centers may move away from point locations (compare Figure 2, images C and G). 
Finally, the calculation of the segment-wise BB approach took between 20 to 30 minutes and 
the cell-based BB version was the slowest with over an hour of processing time (data not 
shown). Interestingly the Brownian Bridge processing in R using the adehabitat package was 
much faster than our java implementation. However, from testing with our software it is clear 
that advantages in modelling have to be weight against the costs of processing time for large 
datasets. 

5. Discussion and Conclusions 

The tests and comparisons have shown that the designed line-based KDE algorithms 
produce the expected utilization density grids with respect to the GPS point configurations. 
Subsequently the expected home range estimates are obtained. In particular (i) travel-
corridors are now included in the derivation of a home range, a limitation of point-based 
KDE, and (ii) GPS locations do not generate zero utilization density values, a limitation of the 
Brownian Bridge model. However, we also note that introducing a scaling of the kernel along 
the line/track-segment had little effect with our two bear datasets when considering the 95% 
contour.  

After we drafted this manuscript Benhamou and Cornelis (2010) published an article on a 
new moving kernel-based algorithm, like ours. However, the details of their specification and 
implementation are different. For instance they advocate a geo-ellipse-like shape and include 
constraints to the home range boundary that stem from topographic features (e.g. a river). 
Whereas experiments performed by us have shown as well a need to include topographic 
constraints in home range modeling; the choice of a segments UD shape is clearly different. 
We advocate the choice of a bone-like shape, which originates from error models, while 
others advocate the geo-ellipse shape, stemming from time-geography. It would be interesting 
to know what shape biologists and wildlife ecologists would chose, and why.  

Benhamou and Cornelis (2010) noted that a potential weakness of their method comes 
from its lack of a standardized procedure for setting minimum and maximum values of the 
smoothing parameter/bandwidth. When we tested our new algorithm we proposed a new 
option to determine the kernel bandwidth, hmtd, which is calculated as the median of the 
average travel distance per day. The experiments on two real datasets show that this value 
could be smaller or larger than href. Based on our limited tests we recommend the use of hmtd if 
the value is smaller than href, since it has been noted that href may return a too large value for 
clumped data – i.e. often produces oversmoothed density estimates (see Sheather, 2004; Kie 
et al., 2010). If hmtd is larger than href, then we recommend using href to retain more detail. 

As we only undertook a limited set of experiments to show that the algorithm works it is 
now necessary to test the robustness of the algorithm and to determine its application range 
(Rykiel, 1996). This testing should be done in particular with respect to (i) other types of GPS 
movement data, and (ii) for other species, since different modes of movement will produce 
different types of GPS point location patterns (Turchin 1998). Finally, a additional need, 
besides the determination of the application range of the algorithm, is to find ways to optimize 
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processing time. Because waiting 20 minutes for each calculation to be finished will 
discourage experimentation with the parameter settings, which we believe will limit insight 
into the data. All code and functions presented in this article can be freely downloaded, 
modified, and distributed in accordance with the GPL software license (Steiniger and Hay, 
2009). Hence, we invite others to test and improve our algorithms. 
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